plotnine.geoms.geom_count¶
- class plotnine.geoms.geom_count(mapping: Aes | None = None, data: DataLike | None = None, **kwargs: Any)[source]¶
Plot overlapping points
This is a variant
geom_point
that counts the number of observations at each location, then maps the count to point area. It useful when you have discrete data and overplotting.Usage
geom_count(mapping=None, data=None, stat='sum', position='identity', na_rm=False, inherit_aes=True, show_legend=None, raster=False, **kwargs)
Only the
data
andmapping
can be positional, the rest must be keyword arguments.**kwargs
can be aesthetics (or parameters) used by thestat
.- Parameters:
- mapping
aes
, optional Aesthetic mappings created with
aes()
. If specified andinherit.aes=True
, it is combined with the default mapping for the plot. You must supply mapping if there is no plot mapping.Aesthetic
Default value
x
y
alpha
1
color
'black'
fill
None
group
shape
'o'
size
1.5
stroke
0.5
The bold aesthetics are required.
- data
dataframe
, optional The data to be displayed in this layer. If
None
, the data from from theggplot()
call is used. If specified, it overrides the data from theggplot()
call.- stat
str
or stat, optional (default:stat_sum
) The statistical transformation to use on the data for this layer. If it is a string, it must be the registered and known to Plotnine.
- position
str
or position, optional (default:position_identity
) Position adjustment. If it is a string, it must be registered and known to Plotnine.
- na_rmbool, optional (default:
False
) If
False
, removes missing values with a warning. IfTrue
silently removes missing values.- inherit_aesbool, optional (default:
True
) If
False
, overrides the default aesthetics.- show_legendbool or
dict
, optional (default:None
) Whether this layer should be included in the legends.
None
the default, includes any aesthetics that are mapped. If abool
,False
never includes andTrue
always includes. Adict
can be used to exclude specific aesthetis of the layer from showing in the legend. e.gshow_legend={'color': False}
, any other aesthetic are included by default.- rasterbool, optional (default:
False
) If
True
, draw onto this layer a raster (bitmap) object even ifthe final image is in vector format.
- mapping
Examples¶
[1]:
import pandas as pd
import numpy as np
from plotnine import (
ggplot,
aes,
geom_count,
scale_size_continuous
)
from plotnine.data import diamonds
Categorized Data Plot¶
geom_count() makes the point size proportional to the number of points at a location
[2]:
diamonds.head()
[2]:
carat | cut | color | clarity | depth | table | price | x | y | z | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.23 | Ideal | E | SI2 | 61.5 | 55.0 | 326 | 3.95 | 3.98 | 2.43 |
1 | 0.21 | Premium | E | SI1 | 59.8 | 61.0 | 326 | 3.89 | 3.84 | 2.31 |
2 | 0.23 | Good | E | VS1 | 56.9 | 65.0 | 327 | 4.05 | 4.07 | 2.31 |
3 | 0.29 | Premium | I | VS2 | 62.4 | 58.0 | 334 | 4.20 | 4.23 | 2.63 |
4 | 0.31 | Good | J | SI2 | 63.3 | 58.0 | 335 | 4.34 | 4.35 | 2.75 |
[3]:
ggplot(diamonds) + geom_count(aes(x='cut', y='color'))

[3]:
<Figure Size: (640 x 480)>
We can adjust the size range of the points with scale_size_continuous
[4]:
(
ggplot(diamonds)
+ geom_count(aes(x='cut', y='color'))
+ scale_size_continuous(range=[1,20])
)

[4]:
<Figure Size: (640 x 480)>