plotnine.geoms.geom_hline¶
- class plotnine.geoms.geom_hline(mapping: Aes | None = None, data: DataLike | None = None, **kwargs: Any)[source]¶
Horizontal line
Usage
geom_hline(mapping=None, data=None, stat='identity', position='identity', na_rm=False, inherit_aes=False, show_legend=None, raster=False, **kwargs)
Only the
data
andmapping
can be positional, the rest must be keyword arguments.**kwargs
can be aesthetics (or parameters) used by thestat
.- Parameters:
- mapping
aes
, optional Aesthetic mappings created with
aes()
. If specified andinherit.aes=True
, it is combined with the default mapping for the plot. You must supply mapping if there is no plot mapping.Aesthetic
Default value
yintercept
alpha
1
color
'black'
group
linetype
'solid'
size
0.5
The bold aesthetics are required.
- data
dataframe
, optional The data to be displayed in this layer. If
None
, the data from from theggplot()
call is used. If specified, it overrides the data from theggplot()
call.- stat
str
or stat, optional (default:stat_identity
) The statistical transformation to use on the data for this layer. If it is a string, it must be the registered and known to Plotnine.
- position
str
or position, optional (default:position_identity
) Position adjustment. If it is a string, it must be registered and known to Plotnine.
- na_rmbool, optional (default:
False
) If
False
, removes missing values with a warning. IfTrue
silently removes missing values.- inherit_aesbool, optional (default:
False
) If
False
, overrides the default aesthetics.- show_legendbool or
dict
, optional (default:None
) Whether this layer should be included in the legends.
None
the default, includes any aesthetics that are mapped. If abool
,False
never includes andTrue
always includes. Adict
can be used to exclude specific aesthetis of the layer from showing in the legend. e.gshow_legend={'color': False}
, any other aesthetic are included by default.- rasterbool, optional (default:
False
) If
True
, draw onto this layer a raster (bitmap) object even ifthe final image is in vector format.
- mapping
Examples¶
[1]:
import pandas as pd
import numpy as np
from plotnine import (
ggplot,
aes,
geom_point,
geom_hline,
facet_grid,
labs
)
from plotnine.data import mpg
Horizontal line¶
geom_hline()
draws a vertical line, and is useful as a guide.
[2]:
mpg.head()
[2]:
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact |
It's useful to use geom_hline()
with some data, so we start with a basic scatter plot:
[3]:
(
ggplot(mpg, aes(x='displ', y='hwy'))
+ geom_point()
+ labs(x='displacement', y='horsepower')
)

[3]:
<Figure Size: (640 x 480)>
Now add a horizontal line to the scatter plot:
[4]:
(
ggplot(mpg, aes(x='displ', y='hwy'))
+ geom_point()
+ geom_hline(yintercept = 25) # add one horizonal line
+ labs(x='displacement', y='horsepower')
)

[4]:
<Figure Size: (640 x 480)>
You can add many horizontal lines:
[5]:
(
ggplot(mpg, aes(x='displ', y='hwy'))
+ geom_point()
+ geom_hline(yintercept = [25,35,45]) # add many horizontal lines using a list
+ labs(x='displacement', y='horsepower')
)

[5]:
<Figure Size: (640 x 480)>
You can change the look of the line:
[6]:
(
ggplot(mpg, aes(x='displ', y='hwy'))
+ geom_point()
+ geom_hline(yintercept = 25,
color='yellow', # set line colour
size=2, # set line thickness
linetype="dashed" # set line type
)
+ labs(x='displacement', y='horsepower')
)

[6]:
<Figure Size: (640 x 480)>
And you can add horizontal lines to a facet plot:
[7]:
(
ggplot(mpg, aes(x='displ', y='hwy'))
+ geom_point()
+ geom_hline(yintercept = 25) # add a vertical line...
+ facet_grid('drv ~ .') # ... to a facet plot
+ labs(x='displacement', y='horsepower')
)

[7]:
<Figure Size: (640 x 480)>