plotnine.geoms.geom_vline¶
- class plotnine.geoms.geom_vline(mapping: Aes | None = None, data: DataLike | None = None, **kwargs: Any)[source]¶
Vertical line
Usage
geom_vline(mapping=None, data=None, stat='identity', position='identity', na_rm=False, inherit_aes=False, show_legend=None, raster=False, **kwargs)
Only the
data
andmapping
can be positional, the rest must be keyword arguments.**kwargs
can be aesthetics (or parameters) used by thestat
.- Parameters:
- mapping
aes
, optional Aesthetic mappings created with
aes()
. If specified andinherit.aes=True
, it is combined with the default mapping for the plot. You must supply mapping if there is no plot mapping.Aesthetic
Default value
xintercept
alpha
1
color
'black'
group
linetype
'solid'
size
0.5
The bold aesthetics are required.
- data
dataframe
, optional The data to be displayed in this layer. If
None
, the data from from theggplot()
call is used. If specified, it overrides the data from theggplot()
call.- stat
str
or stat, optional (default:stat_identity
) The statistical transformation to use on the data for this layer. If it is a string, it must be the registered and known to Plotnine.
- position
str
or position, optional (default:position_identity
) Position adjustment. If it is a string, it must be registered and known to Plotnine.
- na_rmbool, optional (default:
False
) If
False
, removes missing values with a warning. IfTrue
silently removes missing values.- inherit_aesbool, optional (default:
False
) If
False
, overrides the default aesthetics.- show_legendbool or
dict
, optional (default:None
) Whether this layer should be included in the legends.
None
the default, includes any aesthetics that are mapped. If abool
,False
never includes andTrue
always includes. Adict
can be used to exclude specific aesthetis of the layer from showing in the legend. e.gshow_legend={'color': False}
, any other aesthetic are included by default.- rasterbool, optional (default:
False
) If
True
, draw onto this layer a raster (bitmap) object even ifthe final image is in vector format.
- mapping
Examples¶
[1]:
import pandas as pd
import numpy as np
from plotnine import (
ggplot,
aes,
geom_point,
geom_vline,
facet_grid,
labs,
)
from plotnine.data import mpg
Vertical line¶
geom_vline()
draws a vertical line, and is useful as a guide.
[2]:
mpg.head()
[2]:
manufacturer | model | displ | year | cyl | trans | drv | cty | hwy | fl | class | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | audi | a4 | 1.8 | 1999 | 4 | auto(l5) | f | 18 | 29 | p | compact |
1 | audi | a4 | 1.8 | 1999 | 4 | manual(m5) | f | 21 | 29 | p | compact |
2 | audi | a4 | 2.0 | 2008 | 4 | manual(m6) | f | 20 | 31 | p | compact |
3 | audi | a4 | 2.0 | 2008 | 4 | auto(av) | f | 21 | 30 | p | compact |
4 | audi | a4 | 2.8 | 1999 | 6 | auto(l5) | f | 16 | 26 | p | compact |
It's useful to use geom_vline()
with some data, so we start with a basic scatter plot:
[3]:
(
ggplot(mpg, aes(x='displ', y='hwy'))
+ geom_point()
+ labs(x='displacement', y='horsepower')
)

[3]:
<Figure Size: (640 x 480)>
Add a vertical line to the scatter plot:
[4]:
(
ggplot(mpg, aes(x='displ', y='hwy'))
+ geom_point()
+ geom_vline(xintercept=5) # add one vertical line
+ labs(x='displacement', y='horsepower')
)

[4]:
<Figure Size: (640 x 480)>
You can add many vertical lines:
[5]:
(
ggplot(mpg, aes(x='displ', y='hwy'))
+ geom_point()
+ geom_vline(xintercept=[4,5,7]) # add many vertical lines using a list
+ labs(x='displacement', y='horsepower')
)

[5]:
<Figure Size: (640 x 480)>
[ ]:
[6]:
(
ggplot(mpg, aes(x='displ', y='hwy'))
+ geom_point()
+ geom_vline(xintercept=[4,5,7],
colour=['red','orange','green'], # add colour
size=[1,2,3], # set line thickness
linetype='dotted' # set line type
)
+ labs(x='displacement', y='horsepower')
)

[6]:
<Figure Size: (640 x 480)>
Add vertical lines to a facet plot:
[7]:
(
ggplot(mpg, aes(x='displ', y='hwy'))
+ geom_point()
+ geom_vline(xintercept=5) # add a vertical line...
+ facet_grid('drv ~ .') # ... to a facet plot
+ labs(x='displacement', y='horsepower')
)

[7]:
<Figure Size: (640 x 480)>