plotnine.stats.stat_quantile¶
- class plotnine.stats.stat_quantile(mapping: Aes | None = None, data: DataLike | None = None, **kwargs: Any)[source]¶
Compute quantile regression lines
Usage
stat_quantile(mapping=None, data=None, geom='quantile', position='identity', na_rm=False, method_args={}, quantiles=(0.25, 0.5, 0.75), formula='y ~ x', **kwargs)
Only the
mapping
anddata
can be positional, the rest must be keyword arguments.**kwargs
can be aesthetics (or parameters) used by thegeom
.- Parameters:
- mapping
aes
, optional Aesthetic mappings created with
aes()
. If specified andinherit.aes=True
, it is combined with the default mapping for the plot. You must supply mapping if there is no plot mapping.Aesthetic
Default value
x
y
The bold aesthetics are required.
Options for computed aesthetics
'quantile' # quantile 'group' # group identifier
Calculated aesthetics are accessed using the after_stat function. e.g.
after_stat('quantile')
.- data
dataframe
, optional The data to be displayed in this layer. If
None
, the data from from theggplot()
call is used. If specified, it overrides the data from theggplot()
call.- geom
str
or geom, optional (default:geom_quantile
) The statistical transformation to use on the data for this layer. If it is a string, it must be the registered and known to Plotnine.
- position
str
or position, optional (default:position_identity
) Position adjustment. If it is a string, it must be registered and known to Plotnine.
- na_rmbool, optional (default:
False
) If
False
, removes missing values with a warning. IfTrue
silently removes missing values.- quantiles
tuple
, optional (default: (0.25, 0.5, 0.75)) Quantiles of y to compute
- formula
str
, optional (default: 'y ~ x') Formula relating y variables to x variables
- method_args
dict
, optional Extra arguments passed on to the model fitting method,
statsmodels.regression.quantile_regression.QuantReg.fit()
.
- mapping